Projection pursuit regression for moderate non-linearities
نویسندگان
چکیده
We present methods specially designed to be effective with moderately non-linear regression relationships. The model fitted is of the Projection Pursuit Regression (PPR) type with a smooth, non-parametric link function connecting the mean response to a linear combination of the regressors. New algorithms, close to ordinary linear regression, are developed. Considerable numerical evidence is given to substantiate the claims that the new methods outperform standard PPR when the non-linearity is moderate and the signal to noise ratio small.
منابع مشابه
انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملApplication of Non-Linear Functions at Distribution of Output SINR Gaussian Interference Channels
We have examined the convergence behavior of the LSCMA in some simple environments. Algorithms such as Multi¬ Target CMA, Multistage CMA, and Iterative Least Squares with Projection can be used for this purpose. The results presented here can form a basis for analysis of these multi-signal extraction techniques. Clearly, the variance and distribution of output SINR obtained with the LSCMA is al...
متن کاملOn the Use of Projection Pursuit Constraints for Training Neural Networks
\Ve present a novel classifica t.ioll and regression met.hod that combines exploratory projection pursuit. (unsupervised traiuing) with projection pursuit. regression (supervised t.raining), t.o yield a. nev,,' family of cost./complexity penalLy terms . Some improved generalization properties are demonstrat.ed on real \vorld problems.
متن کاملEnhancement of Non-stationary Time-Series Clustering Analysis Using Projection Pursuit Regression Method
The theory and application of time-series clustering analysis is an effective explanatory technique in various research fields. To overcome the limitations and many assumptions in conventional model-based clustering, this study utilizes the projection pursuit regression method as explanatory tool for formulating, identifying and estimating nonlinear models to approach the complex regression sur...
متن کاملCombining Exploratory Projection Pursuit and Projection Pursuit Regression with Application to Neural Networks
Parameter estimation becomes difficult in high-dimensional spaces due to the increasing sparseness of the data. Therefore, when a low-dimensional representation is embedded in the data, dimensionality reduction methods become useful. One such method-projection pursuit regression (Friedman and Stuetzle 1981 (PPR)-is capable of performing dimensionality reduction by composition, namely, it constr...
متن کامل